
CYCLOPENTA (p-PHENYLENE SULFIDE) AND CYCLOTETRA (p-PHENYLENE SULFIDE):
EXAMPLES OF A NEW MACROCYCLIC SERIES

M. L. Kaplan and W. D. Reents, Jr. Bell Laboratories, Murray Hill, New Jersey 07974

Abstract: Cyclotetrameric and pentameric(p-phenylene sulfides) have been isolated from poly(p-phenylene sulfide) and identified and characterized. The reaction of p-dichlorobenzene and sodium sulfide in a solvent results in the formation of linear poly(p-phenylene sulfide) (PPS). We have now succeeded in isolating and identifying from the commercial polymer the oligomeric thioethers cyclopenta(p-phenylene sulfide) [I] and cyclotetra(p-phenylene sulfide) [II].

Extraction of a low molecular weight PPS powder with methylene chloride followed by solvent removal resulted in isolation of 3% of the PPS as an off-white solid. Solid probe mass spectral studies of the solid² provided spectra which, in addition to peaks due to open chain oligomers of low molecular weight, exhibited distinct peaks at m/e 432, m/e 540, m/e 648, and m/e 745 together with peaks for the corresponding doubly charged ions. The appearance of each succeedingly larger molecular ion required a higher temperature than that for the previous molecular ion. Similar observations appear to have been incorrectly interpreted. Bruno, et. al. attributed the ions at m/e 432, m/e 540 and m/e 648 to open-chain fragments arising from thermal cleavage of the PPS being examined.

Chromatography (Al_2O_3) of the solid (10g) from the extraction followed by gradient vacuum sublimation (300°->80°) afforded two, white, crystalline products. The first (0.35g), had a molecular ion at m/e 540. Molecular weight determination by vapor phase osmometry 4 gave 571 \pm 5%. The second compound (0.05g) had a molecular ion at m/e 432.

The physical data for I and II are summarized below:

ΙI

m.p.	257-259° (corr.)	295-297° (unc.)
IR(cm ⁻¹)	3050(w), 1570(m), 1473(s),	3050(w), 1568(m), 1475(s),
CsI pellet	1387(m), 1096(s), 1074(m),	1387(m), 1305(w), 1255(w),
	1010(s), 825(m), 820(m), 802(s)	1180(w), 1130(w), 1095(m),
	745(w), 704(m), 522(m)	1070(m), 1015(s), 834(s),
		825(m), 820(m), 805(m),
		740(w), 715(m), 704(m),
		697(w), 555(m), 510(m)
UV-VIS (nm)	271 (42,200)	272 (27,700)
(CH ₂ Cl ₂)	295(sh) (31,500)	294 (24,800)
1 _{H NMR}	CS ₂ (TMS)	CS ₂ CD ₂ Cl ₂ (TMS)
	singlet 7.13 δ	singlet 7.02 δ
13 _{C NMR} 5	quaternary C 135.629 ppm	138.685 ppm
CD ₂ Cl ₂ CS ₂	protonated C 132.573	133.548
ESR	green solution in CH ₂ Cl ₂	Green solution in Ch ₂ Cl ₂
Radical Cation	with SbF ₅ . Linewidth 1.08G	with SbF ₅
	g = 2.00794	$g = 2.00805$, $a_{H} = 0.25G$
Mass	540(100), 270(33), 216(12),	432(100)
Spectrum	184(21),171(17), 153(10)	No other ions greater
(strong lines)	140(12)	than 5%

I

- 1. J. T. Edmonds, Jr. and H. W. Hill, Jr., U.S. Patent 3,354,129 (1967).
- 2. A detailed mass spectral analysis of the impurities found in PPS will be reported elsewhere.
- 3. G. Bruno, S. Foti, P. Maravigna, G. Montando and M. Przybylski, Polymer, 18, 1149 (1977).
- 4. Vapor phase osmometric measurements were performed by L. E. Stillwagon.
- 5. The help of M. L. M. Schilling in obtaining the 13C spectra is acknowledged.

(Received in USA 18 September 1981)